Morphology and texture evolution of nanostructured CaF2 films on amorphous substrates under oblique incidence flux.

نویسندگان

  • C Gaire
  • P Snow
  • T-L Chan
  • W Yuan
  • M Riley
  • Y Liu
  • S B Zhang
  • G-C Wang
  • T-M Lu
چکیده

The morphology and biaxial texture of vacuum evaporated CaF(2) films on amorphous substrates as a function of vapour incident angle, substrate temperature and film thickness were investigated by scanning electron microscopy, x-ray pole figure and reflection high energy electron diffraction surface pole figure analyses. Results show that an anomalous [220] out-of-plane texture was preferred in CaF(2) films deposited on Si substrates at < 200 °C with normal vapour incidence. With an increase of the vapour incident angle, the out-of-plane orientation changed from [220] to [111] at a substrate temperature of 100 °C. In films deposited with normal vapour incidence, the out-of-plane orientation changed from [220] at 100 °C to [111] at 400 °C. In films deposited with an oblique vapour incidence at 100 °C, the texture changed from random at small thickness (5 nm) to biaxial at larger thickness (20 nm or more). Using first principles density functional theory calculation, it was shown that [220] texture formation is a consequence of energetically favourable adsorption of CaF(2) molecules onto the CaF(2)(110) facet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biaxially oriented CaF2 films on amorphous substrates

Biaxially oriented CaF2 films have been created by first using an oblique incidence vapor flux to deposit CaF2 onto an amorphous surface to form vertically aligned nanorods which served as seeds to grow a more continuous CaF2 capping layer under a subsequent normal incidence flux deposition. The entire film possesses a unique {111}/121S biaxial texture as shown by X-ray pole figure analysis and...

متن کامل

Growth of CdTe Films on Amorphous Substrates Using CaF2 Nanorods as a Buffer Layer

Continuous biaxially textured CdTe films were grown on biaxial CaF2 buffer layers. The CaF2 nanorods were grown by oblique angle vapor deposition and possessed a {111}h121i biaxial texture. The CdTe film was deposited by metal organic chemical vapor deposition (MOCVD). Film morphology and the CdTe/ CaF2 interface were studied by scanning electron microscopy and transmission electron microscopy....

متن کامل

Surface roughness and in-plane texturing in sputtered thin films

Real surfaces are not flat on an atomic scale. Studying the effects of roughness on microstructural evolution is of relevance because films are sputtered onto nonideal surfaces in many applications. To this end, amorphous rough substrates of two different morphologies, either elongated mounds or facets, were fabricated. The microstructural development of films deposited onto these surfaces was ...

متن کامل

Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates

Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...

متن کامل

Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures

Metals with a wide range of melting points are deposited by electron beam evaporation under oblique deposition geometry on thermally oxidized Si substrates. During deposition the sample holder is cooled down to 77 K. It is observed that all obliquely deposited metals grow as tilted, high aspect ratio columns and hence with a similar morphology. A comparison of such columns with those deposited ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 44  شماره 

صفحات  -

تاریخ انتشار 2010